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Orbits and double cosets are intimately related: double cosets can always be 
looked upon as being orbits and often orbits can be identified with double 
cosets, in reverse. This note presents two such situations where orbits can be 
traced back to double cosets: the restriction of transitive permutation rep- 
resentations to subgroups and the cartesian product of two transitive permuta- 
tion representations. These results readily apply to standard topics in chemical 
combinatorics dealing with isomers and isomerizations but equally like to 
less familiar combinatorial schemes such as Redfield's. 

Key words: Enumeration under group act ion--orbi ts--double  cosets--  
permutational isomerism 

In a recent contribution [1], McLarnan emphasized the connections between the 
two current approaches to counting isomers and isomerizations: the method of 
generating functions ~t la P61ya and the double coset formalism, as established 
e.g. in [2-4] and [5-7], respectively. More specifically, he pointed out that 
double cosets can be looked upon as being orbits. Hence, the Cauchy-Frobenius 
Lemmal--which is also basic to the P61ya method--applies  to their enumeration, 
yielding simple proofs of  known formulas. The present note intends to shed some 
further light on the interrelation between double cosets and orbits by means of 
two simple theorems. They are, in fact, simple enough to be, most probably, 
folklore among mathematics professionals in enumeration under group action 
but, to the author's knowledge, they are nowhere recorded in the current literature 
on this subject. 

Usually, but erroneously, attributed to Burnside, cf. [8]. 
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A finite group G is said to act on a finite set M, if the group elements g ~ G are 
associated (homomorphical ly)  with permutat ions ~g ~ Sym(M) of  the elements 
m ~ M. When abbreviating 7rg(m) to gin, the homomorphism condition 7rgfrg,= 
7rgg, takes the form g (g 'm)=  (gg')m, i.e. there is no need for brackets. Due to 
the action of  G, the set M decomposes into equivalence classes, the orbits OG(m) 

O~(m) = { m ' =  gmlg  ~ G}. (1) 

Their number,  according to the Cauchy-Frobenius Lemma, coincides with the 
average number  of  fixed points of  the group elements, 

1 
no. of  orbits=i--AS Y f ( g ) ,  (2) 

IV[ g ~ G  

where f ( g )  denotes the number  of  m ~ M such that gm = m. G is said to act 
transitively on M if M has only one G-orbit.  The final ingredient from the theory 
of enumerat ion under group action is the notion of the stabilizer of  an element 
m c M, that is, the subgroup G,, made up by those group elements that fix m, 

G,, = { g o  Glgm = m}. (3) 

Various equivalence classes in a group G such as cosets, double cosets and 
conjugacy classes may be looked upon as being orbits, due to an action on G of 
some subgroup of G or of  the direct square G x G. So, e.g. right and left cosets 
Ag, gB arise as orbits of  subgroups A and B, acting on G by left and right 
translations, respectively: 

a:  g ~ a g ,  (4) 
b: g~-~ gb -l. 

Another action of subgroups A is that by conjugation, 

--1 a: g~--~.aga , (5) 

which leads to the A-conjugacy classes, in particular to the ordinary conjugacy 
classes for A = (3. Finally, for a direct product  A • B of two subgroups, acting 
through bilateral translation, 

(a,  b) : g~--~ agb -1, (6) 

the orbits are the (A,  B)-double  cosets 

AgB = {g ' = agb-l l a c A, b ~ B}. (7) 

By extending this action to arbitrary subgroups Q of G • G, one arrives at the 
notion of bilateral classes [9]. Since all these classes are orbits, they can be 
enumerated through the Cauchy-Frobenius  Lemma. In fact, a general formula 
for the number  of  bilateral classes is available [9b] which reduces to the 
expressions for the numbers of  (A,  B)-double  cosets and of A-conjugacy classes, 
as cited by McLarnan [1] from [5] and [6], by specializing Q to be a direct 
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product A x B or the diagonal of a direct square, (A • A)d, 

no. o f ( A  B)-double cosets= IGI 5 ~ICpc~AIICp~BI 
' [AIIBI '7  ~ 

no. of A-conjugacy classes =IGJ•  [Cp h A l  (8) 
Ialo Ifpl 

In both these formulas, the sum is over the (ordinary) conjugacy classes Cp of G. 

Now we are ready to introduce the first one of  our two folklore theorems, which 
is about the restriction of transitive permutation representations to subgroups. 
That is: given a set M on which a group G acts transitively, and a subgroup H 
of G, we will describe the H-orbits of M. Since G acts transitively, any rn' ~ M 
may be written as an image m ' =  gm of an arbitrarily fixed rn c M under some 
g c G. However, this representation is not unique, in general, since g'rn = gm if 
(and only if) g' and g are in the same left coset of the stabilizer Gin, i.e. g' c gGm. 
On the other hand g'rn and gm are in the same H-orbit if and only if g'm = hgrn 
for some h c H. Putting both these trivialities together, we arrive at the condition 
g '=  hggm where h ~ H, g,, ~ Gin, in other words: g '  and g are in the same double 
coset of G with respect to the subgroups H and Gin. So we end up with 

Theorem 1. Let a group G act transitively on a set M. Then the orbits o f  a 
subgroup H of  G are in one-to-one correspondence with the double cosets o f  
G with respect to H and to the stabilizer Gm of  an arbitrary element rn ~ M. 
More explicitely, let T be a transversal: o f  the double cosets HgGm. Then 
Trn = {grn I g ~ T} is a transversal of  the H-orbits in M. 

G =  U HgGm <::> M = U On(gm).  
gET g e T  

Applications of this result start, the other way around, from an intransitive action 
of a group H on a set M, looking for a transitive extension to some supergroup 
G of H. It is quite obvious that such transitive extension need not exist--apart 
from the possibility of identifying H with its image in Sym(M) and choosing 
for G a transitive group between Sym(M) and this image, which is as trivial as 
useless. In concrete cases such as of groups acting on sets of mappings by acting 
on their domain and their range, one has to be lucky to find a "reasonable" 
transitive extension. In such fortunate cases, our theorem provides a description 
of orbits in terms of double cosets, which may be used, e.g., to compute their 
number, to construct transversals and to investigate their automorphism groups. 

Example 1: P61ya patterns and double cosets 

P61ya's enumeration theorem [2] refers to groups acting on (sets of) mappings 
by acting on their respective domains. Explicitely, then, let a finite group G act 
on a finite set P = {1, 2, 3 , . . . ,  2i, . . .} through permutations, g~--> 7rg ~ Sym(P). 

2 "Transversal" is a short form of "system of representatives". 
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Then 

g: ~ - > ~ '  = ~o o ~ 1 ,  i.e. ~ ' ( i )  = cp(~r~(i))  (9) 

defines an action of G on the set L p of  mappings ~ from P to any other set 
L = (A, B, C, . . . ,  X, . . .} .  Since G acts through permutations of  the "'sites" i ~ P, 
symmetry-equivalent distributions ~ and ~ ' =  ~0 o 7rg ~ of "l igands" in L over the 
sites in P have the same "gross formula",  that is, the frequencies F ~ ( X ) =  no. 
of  i~ P such that tp(i) = X are the same for ~ and ~'. So we may fix some gross 
formula F (i.e. a function from L to the non-negative integers such that Y, F ( X )  = 
[P[) and ask for the number  of  orbits of  G in the subset LPF of mappings with 
this gross formula. P61ya's theorem provides the answer. Alternatively, we may 
start from the following observation. Let G (p) denote the group of  site permuta- 
tions through which G acts on P, i.e. 

G (P) = {Trg ~ Sym(P)  [ g ~ G}. (10) 

Then, trivially, G-orbits and G(V)-orbits in L p coincide, if we let G (v) act on 
mappings from P to L according to 

~ ' :~--)q~ '= q~ o ~r -I for 7rGG (e). (11) 

This action can, of  course, be extended to the full symmetric group Sym(P) ,  and 
then the Sym(P)-orbi t s  in L P turn out to be just the subsets Lye of mappings 
with some fixed gross formula, since site permutations do not change the gross 
formula of  mappings,  and, on the other hand, any two mappings with the same 
gross formula are mutually convertible by site permutations. Thus we may use 
the preceding theorem and establish a one-to-one correspondence between the 
G-orbits in Ly e and the double cosets of  Sym(P)  with respect to G (p) and the 
stabilizer of  an arbitrarily chosen mapping ~ e L~. This stabilizer, however, is 
just the Young-subgroup Y~ associated with q~, l.e. the direct product  of  the 
symmetric groups on the homogeneously substituted subsets of  P, 

Y~ = Sym(PA) X Sym(P~) x . .  �9 

where (12) 

P x = { i ~  P l ~ ( i ) =  X}.  

So we end up with the well-known result [5], that the G-orbits of  mappings 
~p: P-~ L with gross formula  F are in one-to-one correspondence with the double 
cosets of  the symmetric group Sym(P)  with respect to the image G ~P) of  G and 
an appropriate  Young-subgroup Yr. More precisely, let Y~ be the Young- 
subgroup of  ~p c L P. Then, if T is a transversal of  the double cosets G<P)'rrY~ in 
Sym(P) ,  T~ = {~p o zr-ll ~ - c T} is a transversal of  the G-orbits in L P. 

Example  2: Redfield's range correspondences and double cosets 

The basic schemes in enumeration under group action, as introduced by P61ya 
[2] and generalized by de Bruijn [3, 10], Harary  and Palmer [11] and many  others, 
are concerned with orbits of  mappings between finite sets, under actions of  groups 
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on domain and range. Another such fundamental  scheme - in fact the first one 
in this field - was laid out by Redfield [12] in 1927. His paper  appears  to have 
gone unnoticed until the 1960's when Foulkes [13] and Harary and Palmer [14] 
directed attention to Redfield's work. More recently, Kerber and Lehmann [15] 
presented a joint generalization of P61ya's and Redfield's theories, cf. also [16], 
and Davidson [17] pointed out the utility of  Redfield's approach in chemical 
combinatorics. Redfield's objects are correspondences between the elements of  
k equicardinal sets called ranges, i.e. k-ary relations of  a particular type. The 
case of  k = 3 sets will suffice to illustrate the idea. So let X, Y, Z be three sets, 
each with n elements xL, x2, �9  x , /  yb  Y2, . �9 �9 y , /  z,, z 2 . . . .  z n. A matrix of  size 3 x n, 

x,,o) x~(2) . . .  x,,(,)~ 

Y~(1) Y~(2) . . -  x~(.)] ,  (13) 

Z~_(1 ) Zr(2) . . . Z~.(n )/I 

where 7, tr and ~- are permutations of the integers from 1 to n, constitutes a 
correspondence between the elements of X, Y and Z. Evidently, two such matrices 
induce the same correspondence if and only if they are mutually interconvertible 
by permuting the columns. So the (n l )amatr ices  fall into ( r / ! )  2 classes (of size 
n !, each), one for any correspondence. Now let Q be a subgroup of  the direct 
product of  symmetric groups Sx  • Sy  • Sz. (Here we write Sx  as a short form of 
Sym(X)  as well as S, for the symmetric group of the first n natural numbers).  
That is: Q is a group permuting the elements within each row. Call two matrices 
row-equivalent (with respect to Q) if they are transformed into each other by an 
element of  Q, column-equivalent in the situation discussed before. Joining both 
these equivalences, Redfield arrives at what might be called Q-classes of corre- 
spondences: his term is "group-reduced distributions". In particular, Redfield 
shows that if the xi, the Yi, and the z~ are the nodes of  three graphs, and if 
Q = G • H x K, where G, H and K are the automorphism groups of the X-graph,  
the Y-graph and the Z-graph,  respectively, then the Q-classes account for the 
various "superposi t ions" of  these three graphs. 

Starting from the preceding description, theorem 1 is readily applied as follows. 
The direct product  S x  • Sy  • Sz  acts transitively on the set of correspondences 
between X, Y, and Z, i.e. on the set of  collections of columns 

~ Y~(,~/ i = 1, 2 , . . . ,  n , (14) 

Zr(i)] 

So what we still need is the stabilizer of  an arbitrary such correspondence. We 
choose 

t(y:l } i = l , 2 , . . . , n  , (15) 

k \ z i /  [ 

which is fixed by the diagonal subgroup 

(Sx  • S y  • SZ)d = {(7r, m 7r) I ~r ~ S,}, (16) 
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and thus we end up with a bijection between the Q-classes o f  cor respondences  
and the double  cosets o f  Sx x Sy • Sz with respect to its diagonal  and to Q. 
Turning to enumerat ion,  we make use o f  the formula  (8) for the number  o f  double  
cosets AgB in G. Ident i fying Sx, Sv and Sz with S, ,  the number  o f  Q - c l a s s ~  
turns out  to be 

no. o f  Q- classes = [S"[2 )~ I Cp x C~ x Cp n Q] (17) 
IOl  ~ IC~l  2 ' 

where the Cp, this time, denote  the conjugacy  classes o f  Sn. If, in particular,  Q" 
is a direct product ,  say Q = G x H • K, then 

Is.I ~ ~ l C ~ n G I I C ~ n I 4 1 1 f o n g l  
no. o f  Q-classes [ G @ K  I L iC~l 2 (18) 

The case o f  k = 2 sets X and Y deserves some extra attention. Cor respondences  
between two sets are plainly bijections, and Q-classes are orbits o f  bijections 
under  a g roup  of  (more or  less correlated) symmetries o f  their domain  and range. 
Theorem 1 relates them to the double  cosets o f  Sx x Sy with respect to its diagonal  
and to Q. These double  cosets may  be fur ther  reduced to bilateral classes [9] in 
s . ,  

Q[z]  = { z ' =  r I (7r, o ' )~ Q}, (19) 

in part icular  to double  cosets GrH, in case that  Q is a direct p roduc t  subgroup,  
Q = G x H. Formally,  this is done  by mapp ing  the direct square S, x S, onto S, 
according  to (or, o')~-->r "-1. This mapp ing  takes double  cosets o f  S, xSn with 
respect to its d iagonal  (on the right) and another  subgroup Q into Q-bilateral 
classes o f  S, by "cancel l ing"  the factor  (S,  x Sn)d 3. On the other  hand,  Q-classes 
o f  bijections are immediate ly  related to bilateral classes in S, by  identifying both  
the x 's  and  the y ' s  with their labels, which turns bijections between X and Y 
into permuta t ions  o f  the numbers  1 to n. For  further  details compare  [18] as a 
recent review of  both,  double  cosets and bilateral classes. 

Let us now turn to another  relation between orbits and double  cosets. It refers 
to the cartesian p roduc t  o f  two transitive permuta t ion  representat ions as follows. 
I f  a g roup  G acts on two sets M and N, these two actions natural ly combine  to 
a single act ion o f  G on the cartesian p roduc t  M x N 

g: (m, n)~-->(gm, gn). (20) 

There is no  chance  for  this action to be transitive unless G acts transitively on 
both,  M and  N. But even then, their cartesian p roduc t  M x N will, in general, 
decompose  into several orbits. These orbits are in one- to-one cor respondence  
with the double  cosets o f  G with respect to the stabilizers G,, and G~ of  two 
arbitrary elements m c M, n c N as follows: Since G acts transitively on M as 

3 Alternatively, this relation between Q-bilateral classes of a group G and double cosets of G • G 
with respect to (G • G) d and Q is an easy consequence of theorem 1 : The supergroup G x G of Q 
acts transitively on G, its diagonal is the stabilizer of the identity, hence the double cosets of G x G with 
respect to these two subgroups are in one-to-one correspondence with the orbits of Q acting on G, i.e., 
with the Q-bilateral classes in G. 
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well as on N, any pair (m',  n') e M x N can be expressed as a pair of  images 
(g lm,  g2n) of two fixed elements m E M, n e N under two appropriate  group 
elements gl, ge e G. Now (g lm,  g2 n )  and (g~m, gin)  are in the same G-orbit  if, 
and only if, there is some g e G such that g~e gg~Gm and, simultaneously, 

. p - - 1  t g'2E ggEG~. This holds precisely if 61 g2 C Gmg-~lg2G,. So, our result is 

Theorem 2. Let a group G act transitively on two sets M and N. Then the G-orbits 
o f  the cartesian product M x N are in one-to-one correspondence with the double 
cosets o f  G with. respect to Gm and G,,  the stabilizers of  two arbitrary elements 
m e M, n E N. More precisely, let (F be a transversal o f  the double cosets GmgGn. 
Then {m} x Tn = {(m, gn) [g E T} is a transversal 4 of  the G-orbits in M x N. 

G =  U GmgG~ r M x N =  U O~( (m,  gn)). 
geT  geT 

This result could as well be obtained as a corollary to theorem 1 as follows. I f  
G acts transitively on both M and N, then G x G acts transitively on M x N 
according to 

(g,  h) : (m,  n)~-',(gm, hn). (21) 

Restriction of  this action to the diagonal subgroup (G  • G)a yields the previous 
action of G on M x N. The stabilizer of a pair (m,  n) is the direct product  of  the 
individual stabilizers, G,, • G,. So, application of theorem 1 results in a one-to-one 
correspondence between the G-orbits of  M x N and the double cosets of  G x G 
with respect to its diagonal and the direct product subgroup G,, x Q .  The mapping 
(g,h)~-~gh -1 from G •  onto G, in turn, takes these double cosets 
( G x G ) a ( g ,  h)(Gm x G~) into the double cosets Gmgh-lGn, in a one-to-one 
fashion. Of  course, this approach is unnecessarily complicated, but it demonstrates 
the general applicability of  theorem 1 (together with one or two more tricks, which 
may be needed in order to obtain the opt imum result). 

There is still another road to theorem 2, which starts from the following observa- 
tion. As before let a group G act on a cartesian product M x N  by acting, 
componentwise,  on M and on N. We wish to compute a transversal from the 
orbits. So let T be a transversal of  the G-orbits in M. Then, if ml, m2e T are 
two distinct representatives, pairs (mb nl) and (m2, n2) are in different G-orbits 
in M •  whatever n~, n2e N may be. But pairs (m ,  n~), ( m ,  n2) with the same 
M-componen t  can be in the same G-orbit,  namely if (and only if) there is some 
g ~ G which takes n 1 into n2 while fixing m. So, we have 

Lemma. Let a group G act on M • N by acting on M and on N. Furthermore, 
let T be a transversal f rom the G-orbits in M, and, for any m e T, let T,. be a 
transversal from the Gin-orbits in N. Then {(m, n)l m e T, n e Tin} is a transversal 
o f  the G-orbits in M • N. 

In particular, if G acts transitively on M, the G-orbits in M • N bijectively 
correspond to the Gm-orbits in N. In case that G acts transitively on N as well, 

4 Each representative (m,  gn) could of course be substituted by any of the pairs (gl m,  g2 n) with 

glqg2 = g. 
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we may again invoke theorem 1, resulting in a one-to-one correspondence between 
the G-orbits in M • N and the double cosets of G with respect to the stabilizers 
Gin, G, of  two arbitrary elements m ~ M, n s N. 

As a remark in passing, the preceding lemma is quite interesting on its own right since 
it provides the basis for an efficient method to construct transversals [19] e.g. in the 
case of groups acting on (sets of) mappings by acting on their domain. 

Example 3: Isomerizations via highly symmetric transition states 

In his paper [1], McLaman discusses rearrangements of molecular or crystal 
systems from an initial state I with symmetry A to a final state F with symmetry 
B via some transition state T with symmetry G, such that I and F may be 
represented as orbits of  colorings of T. A and B then are the stabilizers Gi and 
Gf of some initial and final coloration, and the rearrangements I--> T-->F are 
given by the G-orbits in the cartesian product  I •  i.e. in the set of  pairs (i',f ') 
of initial and final colorations. These orbits are, in turn, in one-to-one 
correspondence with the double cosets AgB in G (or the BgA, equivalently). 

Example 4: Superpositions of P61ya patterns 

As in example 1, let a group G act on a set of  mappings, L ;  by acting on their 
domain, P. Suppose that P decomposes into two G-orbits, Q and R. Since any 
mapping from P to L uniquely corresponds to a pair of  mappings from Q to L 
and from R to L, and vice versa, L P may be identified with the cartesian product 
L Q x L  R. Trivially, G acts an both factors by acting on Q and on R, and 
componentwise action coincides with the original action of G on L :  So, instead 
of decomposing L p into orbits, we may first decompose L Q and L R, separately, 
and then, for any two orbits, construct their superpositions, by decomposing their 
cartesian product  into orbits. Now let ~ ~ L Q and ~/, s L R be two such partial 
mappings. Then the superpositions of the corresponding patterns, i.e. the orbits 
in the cartesian product  Oc(q~) • O~(~b), are in one-to-one correspondence with 
the double cosets G~gG6 in G. Explicitely, let T be a transversal of  these double 
cosets. Then {(~, ~b o p~l)[g ~ T} is a transversal from the orbits of  mappings with 
Q-part in O~(~)  and R-part  in Oo(~b). Here p~ ~ Sym(R) is the permutation by 
which g acts on R, and the pairs (r ~, o p~l) are glued together to form a mapping 
from P to L according to 

�9 [~(i) for i~ Q (22) 
(9, ~ o pgt):t~-->~b(pg,(i) ) for i~ R" 

By iterating this procedure, P61ya Enumeration can be refined to include specifica- 
tion of a partial gross formula for each orbit of  sites. 

For an explicit example, consider a cubic arrangement of  sites, as shown in 
Fig. 1, i.e. a superposition of a cube and an octahedron. 
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Fig. 1 

The corners of  the cube as well as those of  the octahedron are to be coloured 
black or white, and we are interested in the orbits of  colorations under the 
octahedral group, with two of the cubic sites and one of the octahedral sites 
coloured black, the remaining 13 sites coloured white (or simply uncoloured, in 
our figures). Up to orientation, there are three such partial colorations of  the cube, 

Fig. 2 

while there is of  course only one for the octahedron. 

o 
I 

I /  
. . . .  

I 
t 

The stabilizers of  these partial colorations are C2 = {e, c2}, C~= {e, c]} and D 3 

for the cubic ones, and C4 for the octahedral one. The octahedral group has 

3 double cosets with respect to C2 and C4, 
4 double cosets with respect to C~ and C4, 
1 double coset with respect to /)3 and C4. 

Indeed, there are three superpositions 

Fig. 4 

four of  the type 

Fig. 5 
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and finally one of the third type. 

Fig. 6 

It is, of  course, no more than an easy exercise to implement this refinement into 
P61ya's generating function as well. If PL, P2, - . . ,  P~, - . .  are the G-orbits in P, 
upon which g c G acts through permutations 7rg(I), ~r~g2), . . . ,  ~r~ ~), . . . ,  then the 
result is given by 

In this expression, we use different symbols X1, X 2 , . . . ,  X~, . . .  to denote the 
same ligand type X as occurring in the various orbits of  sites, and we also attribute 
individual sets L~ of  admissible ligand types to them. In the exponents, ak(') 
stands for the number of  cycles of length k of the permutation in question. The 
coefficient of  any monomial 

H X~ (x~) (24) 
X~ 

in the polynomial above gives the number of  G-orbits of  mappings with F(X~) 
ligands of  type X on sites in the ~,-th orbit of  P. 
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